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Abstract Drosophila research has identified a new
feature of aging that has been called the death spiral.
The death spiral is a period prior to death during which
there is a decline in life-history characters, such as
fecundity, as well as physiological characters. First,
we review the data from the Drosophila and medfly
literature that suggest the existence of death spirals.
Second, we re-analyze five cases with such data from
four laboratories using a generalized statistical frame-
work, a re-analysis that strengthens the case for the
salience of the death spiral phenomenon. Third, we
raise the issue whether death spirals need to be taken
into account in the analysis of functional characters
over age, in aging research with model species as well
as human data.
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Introduction

Research with humans, Drosophila, medflies, and
other model organisms has revealed three distinct
demographic phases (Greenwood and Irwin 1939;
Beard 1959; Carey et al. 1992; Curtsinger et al. 1992;
Vaupel et al. 1998; Mueller et al. 2003; Rose et al.
2006; Mueller et al. 2011). The first phase, which
occurs prior to the start of reproduction, is the
developmental period. Under protected conditions, at
least after the perinatal period, this phase character-
istically features low levels of mortality with no
consistent trend relative to age.

The second phase, normally called “aging,” fol-
lows the onset of reproduction. During this phase, age-
specific mortality rates almost always rise, even under
protected conditions (Comfort 1979), with the singular
exception of fissile species (e.g. Bell 1984; Martinez
1998). For fissile species it could be said that there is
effectively no part of life history that follows the first
act of reproduction.

The third demographic phase, which has chiefly
been of interest since 1992 (e.g. Carey et al. 1992;
Curtsinger et al. 1992; Rose et al. 2002; Mueller et al.
2011), has been called “late life” (e.g. Rose et al.
2005; Rauser et al. 2006a). At these advanced adult
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ages, the age-specific mortality rates of iteroparous
species roughly stabilize, at least in human and model-
species cohorts that are sufficiently large (Greenwood
and Irwin 1939; Carey et al. 1992; Curtsinger et al.
1992; Vaupel et al. 1998; Rose et al. 2002; Rauser
et al. 2006b).

In this paper we present a general case for the
existence of a fourth feature of life cycles, which we
call the “death spiral” (Rauser et al. 2005; Mueller
etal. 2007, 2011). The death spiral is detectable across
a wide range of adult ages, as we will show. An
obvious interpretation is that it features a general and
abrupt decline in physiological health prior to death.
But more importantly for biogerontological analysis,
death spirals create significant heterogeneity within
cohorts, heterogeneity that raises problems for the
analysis of age-dependent functional characters quite
broadly.

Evidence for the existence of the death spiral
from Mediterranean fruitflies

Papadopoulos et al. (2002) noted that 97 % of male
medflies (Ceratitis capitata) began showing a tempo-
rary upside-down orientation, or supine behavior,
about 16 days before their death. Since these medflies
have an average age at death of about 62 days, the
16-day onset of medfly supine behavior is roughly
equivalent to the period of time that Drosophila
exhibit death spiral phenomena (Mueller et al. 2007
and this paper).

Miiller et al. (2001) studied lifetime fecundity in
531 medflies. They noted that, after reaching a peak in
early life, fecundity declined in an approximately
exponential fashion. The rate of decline in fecundity
was measured by a parameter, [3;, which showed wide
variation among individual females. In particular, they
noted that females that die early in life showed a rapid
decline in fecundity with age (large B;), while females
that lived longer showed a slower decline in fecundity
(small B;). For instance, inspection of Fig. 1 in Miiller
et al. (2001) shows that a female that died early in life
(28 days) was predicted to lay only 18 eggs at age
25 days, while the average fecundity in the whole
population at this age was 27 eggs.

The Miiller et al. data can be interpreted as
capturing death-spiral phenomena in female fecun-
dity. Females that die at young ages have steeper
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declines in age-specific fecundity, because their
trajectories are based on fecundity observations that
are part of the death spiral and thus decline faster than
the fecundity of similarly aged females that are not
about to die. Miiller et al. suggest that death is a
consequence of females rapidly diminishing their
reproductive reserves and that these reserves vary
among individuals.

Evidence for the existence of the death spiral
from Drosophila

Studies of individual female fecundity

Over the last decade, multiple Drosophila laboratories
have independently discovered patterns of aging that
suggest the existence of death spirals among labora-
tory cohorts handled as adults with sufficient care to
minimize the possibility of artifactual effects, such as
infectious disease. In each of the relevant studies, daily
counts of female fecundity were made from very early
in adult life until death.

In the course of analyzing adult female Drosophila
melanogaster handled individually, Rauser et al.
(2005) found that individual female fecundity steeply
declines just prior to death. Further quantitative
analysis of the Rauser data led us to develop a formal
analysis of the death spiral (Mueller et al. 2007, 2011).
This analysis incorporated a two-phase adult female
life-history, with both aging and late life, as well as a
distinctive death spiral phase in which fecundity
declines linearly, but at a more rapid pace than the
decline that characterizes normal aging.

Rogina et al. (2007) inferred the existence of a
comparable death spiral phenomenon for Drosophila
female fecundity, noting that females that were about
to die the next day always laid zero eggs and that
independently of their mating schedule showed fecun-
dity declines for a week or more before death. The
egg-laying of females on the day before that zero-
fecundity day averaged about 0.2 eggs. Their study
used 386 females from a mutant balancer stock of D.
melanogaster.

Curtsinger (2015) proposed that the age at which a
female first lays zero eggs is a significant indicator of
impending death. In his analysis of several previously
published databases, specifically those of Le Bourg
et al. (1988), Rauser et al. (2005), Klepsatel et al.
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(2013) and Khazaeli and Curtsinger (2014), he shows
that roughly 10 days before the first zero egg count
day a standardized fecundity measure starts declining
(Curtsinger 2015; Fig. 3b), which corresponds
roughly to the start of the death spiral that had been
previously inferred by Rauser et al.

Death spirals in male virility data

Shahrestani et al. (2012a) studied male fertility, often
called virility, by counting the number of females, of
eight total, that a male could fertilize in 24 h. They
found that the virility of males that were within 7 days
of death was significantly lower than that of similarly
aged males that were not about to die.

Materials and methods
Lifetime female fecundity

In the first re-analysis, we relied on lifetime fecundity
records collected from the following four sets of
cohorts: (Le Bourg et al. 1988; Rauser et al. 2005;
Klepsatel et al. 2013; Khazaeli and Curtsinger 2014).
We first review some important details of the biolog-
ical Materials and methods used in the construction of
each of these databases.

Le Bourg et al. (1988) collected lifetime fecundity
records on 322 females. These samples came from
three populations, two were selected for activity level
and the third was a control population. Assays were
conducted over seven generations of selection. These
populations were started from a standard Oregon R
stock and at each generation only ten pairs of flies were
used to reconstitute the next generation. Over the
course of this experiment, heterozygosity was reduced
by about 17 %, and in all likelihood the original
Oregon R stock was inbred to some degree. Vials
consisted of a male—female pair and males were not
replaced upon death. The flies were given standard
food with live yeast.

Khazaeli and Curtsinger (2014) used two inbred
lines, R17 and S9, to derive a total of 335 females.
These inbred lines were created by 28 generations of
full sib mating using two populations created by
Luckinbill and Claire (1985). The R17 inbred line was
derived from Luckinbill and Claire’s LA line which
was selected for late life fitness, while the S9 inbred

line was derived from Luckinbill and Claire’s LD1
control line. Females were assayed in vials with two
males that were replaced as needed. Fresh food was
supplied daily, although there did not appear to be any
yeast supplementation.

Klepsatel et al. (2013) collected lifetime fecundity
records on 488 females derived from three populations
collected from (i) Austria, (ii) South Africa, and (iii)
Zambia. These populations were maintained in the
laboratory for only 2—4 generations prior to these
assays. The Austrian population was created from a
sample of 200 flies, the South African population from
140 flies derived from 7 isofemale lines, and the
Zambian population from 600 flies derived from 30
isofemale lines. An isofemale line would typically
undergo at least one generation of full sib mating.
Females were kept in vials with about 10 mg of live
yeast supplement and 2 males. Dead males were
replaced.

Rauser et al. (2005) used adult flies that were aged
12 days from egg (not 12 days as adults as reported by
Curtsinger 2015), which made the adults 1-2 days old
at the start of the assays. Each female was housed in a
vial with 2 males and these males were replaced as
they died. Vials were supplemented with 5 mg live
yeast. A single, large, lab-adapted population (called
“CO;” created in the study of Rose et al. 1992) was
used to derive three independent cohorts, yielding a
total of sample size of 2828 females.

Lifetime male virility

We analyzed lifetime male virility from the data of
Shahrestani et al. (2012a). Virility observations con-
sist of counts of the number of females that a male
fertilizes in 8 h. Like with the fecundity data,
Shahrestani et al. tested large samples (712) of males
once a week until their death.

Scaled age-specific fitness

The concept of the death spiral is a death process.
Accordingly, we sought a means of examining this
process independent of an individual’s precise age. We
chose to recast an individual’s age as a series of target
ages. We first describe the method used for female
fecundity. At each target age we could classify a female
as either alive or dead by the end of the target age. This
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would then create two groups of females and each
female would have an associated history consisting of
her record of eggs 1aid 0, 2,..., m days prior to the target
age, e.g. days before death. To standardize an individ-
ual’s fecundity phenotype, we scaled and centered the
entire population’s fecundity measurements at each
age. Thus, if at age-t, the average fecundity of all live
females and females that died at age-f were, f;, and the
standard deviation, G,, then the fecundity of female-j

at time-t, f;;, would be transformed to f,j :f”'ij’. If

female-j is found dead on day-t there is a 24 h window
on her exact time of death. Thus, the f;; values may
reflect the eggs produced in a 24 h period (if the
female died just before the census), or perhaps the
eggs laid in just a few minutes of time (if she died
immediately after being transferred to the fresh vial).

If at time-f there are n,, females at that age, either
alive or those that died that day, we generate predictor
vectors for female-j (j = 1,..., n,) that look like,
f; = (fmzi’fmflw . "fOJ)’ where we have now trans-
formed the time scale so t = 0, r—1 = 1, and so on.
Thus, ﬂ o is the transformed fecundity for female-j,
k days before the target age. This process is repeated
for the next age, r + 1, and n, . | new records are
created (Fig. 1). Obviously, females that did not die by
age t + 1 will have nearly the same fecundity records
entered into the database at both target ages ¢ and
t + 1. When creating these records, we omitted

Four-day window analysis of data from a single female

Target Ages
Adult age 21 22 23 24 25 26 27
Scaled fecundity 09 13 04 01 -12 -1.7 NA
Female status live live live live live dead
LA 1
LB 1
L ¢ 1

Window A. live female status, (0.9, 1.3, 0.4, 0.1)
Window B. live female status, (1.3, 0.4, 0.1, -1.2)
Window C. dead female status, (0.4, 0.1, -1.2, -1.7)

Fig. 1 An example of scaled fecundity records from a single
female. The scaled fecundity values for one female at ages
2-26 days are shown using a 4 day window. The female is
found dead at the end of day 26. The records generated at target
days 24, 25 and 26 from this female are shown. The record for
target day 24 is labelled A, for day 25, B and for day 26, C. Since
the female dies on day 26 no record for this female is generated
at day 27. In this example a single female generated two records
classified as “live” and one classified as “dead”. In general each
female will have many live records and only a single dead record
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females that did not have complete fecundity records
for the entire window of m + 1 days. In addition,
females that died at ages <m were not included in
these records. These records were used to do regres-
sions of scaled fecundity on days before the target age
for the dead females and the live females. Since the
database of live females included the same females
multiple times, observations are correlated. Therefore,
the analyses of the regression results must use methods
that can take into account these correlations.

We did bootstrap resampling of our scaled fecundity
dataset to determine the variances in scaled fecundity at
various ages before the target age and to determine if the
slope of the regression lines for the dead and live females
differed. The total size, N, of the Rauser et al. dataset was
large: 43,093 with a 15-day window (m = 14). At each
bootstrap sample, we sampled with replacement N fe-
male fecundity records. From this we took a subsample
of 1000 records of live females and 1000 records of dead
females. We then computed the mean scaled-fecundity
of each group and the regression of scaled fecundity
versus days before target age. We did 100 bootstrap
samples and from these computed empirical 95 %
confidence intervals on the mean scaled-fecundity and
confidence intervals on the slopes of each line.

Some females will stop laying eggs sporadically or
completely prior to death. Curtsinger (2015) has
recently argued that the appearance of days with zero
egg counts is an important indicator of the end of life, a
phase he has called the retired stage. We followed up
on his suggestion by examining how useful zero egg
counts are for predicting death. To do this we took the
records of lifetime female fecundity and changed each
daily egg count to O if no eggs were laid and 1 if one or
more eggs were laid. We then used the target age
concept described previously to generate records for
live and dead females.

The virility data at each age was scaled and
centered in the same way we transformed female
fecundity data. We also did bootstrap re-sampling to
estimate the variance of the scaled virility values of
males that were alive and dead on the target day.

Predicting death at the target age
Can we use scaled fecundity or zero egg counts at say

up to m-days before the target age to predict which
female will be dead at the target age? This is not as
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simple as one might think. Recall that a female that
dies one day after the target age will be included in the
“live” group and her fecundity record will be the same
as when she actually dies, except for the inclusion of
new information at day 1 and the removal of the
day m observation.

We used a statistical learning technique, boosted
classification trees, to predict whether a female is dead
or alive on the target age based on her fecundity record
in the previous m days. Classification trees provide
predictions on an individual’s membership in a binary
classification based on successive partitioning of the
predictor space (Hastie et al. 2009, Chap. 9). Boosting is
a technique for improving the prediction of methods
such as classification trees, which employ the sequen-
tial building of trees in which each step creates
additional tree branches that are constructed to improve
the prediction of the residuals from the previous tree
(Hastie et al. 2009, Chap. 9).

In order to avoid developing a classification tree that
focused on the correct prediction of live females due
simply to the much larger number of records for live
flies, we created a data set with an equal number of
records of live and dead flies from the Rauser et al. data.
From this we used 80 % of all the data (training data) to
train the boosted classification tree. The remaining 20 %
of the observations (testing data) were used to predict
whether each female was alive or dead at the target age.
We determined how many days prior to the target age
provided the best predictions based on 10-fold cross
validation of the training data set. In addition, the same
cross-validation statistics were used to determine (i) the
number of trees that resulted in a minimum error, (ii) the
best depth of the individual trees, and (iii) the optimal
shrinkage parameter (for a discussion of these issues see
Gareth et al. 2013, Chap. 8).

Predictions with the testing data gave rise to two
sorts of errors. Females that were dead at the target age
were incorrectly predicted to be alive (dead error rate),
and females that were alive at the target age were
incorrectly predicted to be dead (alive error rate). If we
simply guessed female status the error rates would be
50 % since we had equal numbers of live and dead
females in the testing data.

Destructive physiological measurements

If fitness components like fecundity and virility
decline during the death-spiral, then we expect other

physiological functions to change prior to death as
well. One problem with testing this idea is that in
Drosophila many physiological tests are destructive,
and therefore we cannot use death as an indication of
which flies are in the death-spiral. We have proposed
as a solution to this problem to use female fecundity
for several days prior to a destructive physiological
assay (Mueller et al. 2009; Shahrestani et al. 2012b).
One difficulty with any potential test by these tech-
niques is that the physiological character may be
correlated with fecundity, and thus by using fecundity
to identify females in the death-spiral we may get a
sample that looks different simply because of these
correlations.

Shahrestani et al. (2012b) developed a procedure
that utilized principal components of physiological
characters, such as desiccation resistance and time-in-
motion, rather than the raw measurements. Thus, for
each female the centered and scaled desiccation and
time-in-motion observations were transformed to a
vector, z; = (z1;, 22i), I = 1,..,n, of the two principal
components. Shahrestani et al. partitioned the n
principal component vectors into a “death-spiral”
group, with principal components Z,;, and a “non
death-spiral” group, with principal components Z,,,,
according to each female’s fecundity. Using the mean,
i, and covariance, > , of Z,,, the Mahalanobis distance
for every female was estimated as,
d?> = (z; — fi)" 27 (z; — f1). The test statistic is then a
simple #-statistic resulting from a comparison of the
mean Mahalanobis distance among spiral females
versus the mean among non-spiral females. This
statistic has a nominal 5 % type-I error rate even
when there are correlations between fecundity and
these characters, but no difference in the mean value of
these traits in the two groups (Shahrestani et al.
2012b).

Results
Lifetime female fecundity

For the Rauser et al. data set, we see that the difference
between the scaled fecundity of the dead and alive
females becomes greater the closer the comparison is
to the target age (Fig. 2a). The slopes of the regression
are significantly different. Thus, we get an indication
from these data that female fecundity starts declining
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well before death, perhaps as early as 2 weeks before.
This is a strong indication that flies that are dying from
intrinsic causes, not accidents or catastrophes, start to
show physiological manifestations of this well before
death. As we will see later, female fecundity is not the
only trait that is adversely affected by the death
process.

How robust are these results? We address this by
creating scaled fecundity data for the three other
published D. melanogaster data sets described previ-
ously. Each of these shows remarkable consistency
with the Rauser et al. results (Fig. 2b), suggesting that
the death spiral is common to this species, at least for
female fecundity.

Although we have suggested that the death spiral is
not a direct product of aging, its characteristics may be

0.4

(a)

0.2 §

0.0 4

® dead at target age
v alive at target age

Scaled fecundity

alive at target age

Scaled fecundity

Rauser et al.
. — — — Khazaeli and Curtsinger
oo mmm—— Klepsatel et al.
0.8 ‘ ‘ i bt Le Boqrq et §| ‘
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Days before target age

Fig. 2 a Rauser et al. scaled fecundity for females dead at
target age (circles) and alive at the target age (triangles) for up to
16 days before the target age. The bars are 95 % confidence
intervals calculated from 100 bootstrap samples. The slope of
the line through the live female data is 0.0085, with a 95 %
confidence interval of (0.004, 0.013) and the dead female slope
is 0.062, with a 95 % confidence interval of (0.058, 0.066).
b Regression lines for the Rauser et al. data in (a) and three other
data sets as indicated
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a function of age. To study this, we divided the females
from Rauser et al. into quartiles according to their ages
at death. Thus, the first quartile consisted of scaled
fecundity records for females at target ages less than
24 days, then 24-30 days, 31-38 days, and greater
than 38 days for the second, third and fourth quartile,
respectively. When we examine the difference
between the mean scaled fecundity for 4 days prior
to the target day (Fig. 3), we see that age at death has a
large effect on the difference between the live and
dead groups at the target age, but that the differences
between quartiles diminishes rapidly as we move
further from the target age. Females that die at a young
age will be more impacted by the death spiral than
females that die at older ages, especially at ages very
close to death. So while age at death has some impact
on the magnitude of the death spiral effect, the number
of days before death is a more substantial indicator of
the impact of the death spiral effects.

Analysis of zero egg counts

Using the results from all four laboratories, we see that
there is a distinct difference for the fraction of females
laying zero eggs when we compare the females alive at
the target age with those dead at the target age (Fig. 4).
As mentioned previously, since some females may
have only short periods to lay eggs on the day they
died, the day zero observations are of limited utility.
Just before death, all populations show a very high

1.4
A\ 1st quartile

@ N\
2 12
o ' k2nd\u{artile
(0]
S g 101 N
co N\
© O 3rd quartile \\
29
E2 o8
cC® "
o —
©
3 061
o
o

0.4

0 1 2 3
Days before target age

Fig. 3 The differences between scaled fecundity in the live and
dead females as a function of age-at-death (dashed lines). The
first quartile of data represents the youngest females while the
fourth quartile represents the oldest females. The solid line is for
the entire Rauser et al. data set
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fraction of females laying no eggs, although it is not
100 %, and the value varies substantially between lab
populations. In the Rauser et al. and Khazaeli and
Curtsinger cohorts, about 60 % of the females are not
laying eggs the day before death, while in the Le
Bourg et al. and Klepsatel cohorts, the number is
closer to 80 % and as reported previously is 100 % for
the flies studied by Rogina et al. (2007). As with the
scaled fecundities, the fraction of females with zero
egg counts for females dead on the target day declines
as we look further from the day the fly dies. It is similar
to the values for live flies by about day 14 before death.
In this sense, the zero egg count days shows a death
spiral decline that has a similar dynamic to the scaled
fecundity decline.

We used the large data set of Rauser et al. to
examine if the fraction of females laying zero eggs
differs depending on when a female died. We divided
the Rauser et al. data into quartiles, as we did with the
scaled fecundity. We see that the fraction of females
with zero eggs is generally higher for females that die
at older ages (Fig.5). It also appears that as we
examine days further removed from the day of death,
fewer females are laying zero eggs and this is most
pronounced with young females.

The best predictions utilized only 4 days of scaled
fecundity records prior to the target day. For the
Rauser et al. test data, the best predictions were for the
dead females (Fig. 6a) and the average error rate was
about 23 %. Using the boosted classification tree
trained on the Rauser et al. scaled fecundity data, we

dead females

1.0 q
Q —e— Rauseretal.
\ — — — Khazaeli and Curtsinger
g g 081 ———— Kiepsatel et al
o c psatel et al.
o 8 ’\ ............. Le Bourg et al.
E O ]
9 o 0.6
- D
c ©
o
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= N S\ Bl e
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L3 02 Pheal e, BT TTS
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0 2 4 6 8 10 12 14 16
Days before target age

Fig. 4 The fraction of females laying zero eggs as a function of
time before target ages in four different Drosophila databases.
The bars on the Rauser et al. lines are 95 % confidence intervals
computed from a standard binomial distribution

also predicted the status of females in the three other
data bases. While the predictions are slightly better for
the Rauser et al. data, there were low prediction errors
in all the other databases (Fig. 6a), and the predictions
were certainly much better than simply guessing.

We next repeated the construction of boosted
classification trees using the zero egg count data.
Even though the classification tree was trained on the
Rauser et al. data, the Le Bourg et al. and Klepsatel
et al. data had a lower error rate for dead females than
the Rauser et al. data (Fig. 6b). We can make sense out
of these results if we examine the relative importance
of the predictor variables. Each dependent variable
can be assigned a relative weight in a classification
tree based on the frequency it is used to bifurcate each
branch of the tree. The day before the target age
provides the most important predictor data when using
either scaled fecundity or zero egg counts, although it
is more so with zero egg counts (Fig. 7). The Klepsatel
et al. and Le Bourg et al. data have a higher frequency
of zero egg counts the day before death (Fig. 4) than
the other two databases, accounting for the more
accurate prediction of which females will die. Con-
versely, the Rauser et al. data show the lowest
frequency of zero egg counts the day before the target
age among live females (Fig. 4) and hence the most
accurate prediction of which females are alive
(Fig. 6b).

Are zero egg counts better at prediction than scaled
fecundity? We can use the dead female error rates to

1.0 mm 1* quartile
T T 2nd quartile
+T T mmmm 3rd quartile
o2 087 C— 4th quartile
o< T T
© >3 -
§S 061 f
L5
w— O
c
c O
S g 04
SN
©c
L= 02
0.0 ! ! !
0 1 2 3 4

Days before death

Fig. 5 The fraction of zero egg counts as a function of time
before death in the Rauser et al. data. The data has been stratified
by age at death. Thus, the first quartile represents the zero egg
counts for females that were among the first 25 % to die and so
on. The bars are 95 % confidence intervals
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Emmm Rauser et al.
zzZ1 Khazaeli and Curtsinger
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Fig. 6 Error rates from boosted classification trees in four
different databases. The bars are 95 % confidence intervals.
a Error rates for the scaled fecundity data. b Error rates for the
zero egg count data. See the text for definitions of the error rates
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Fig. 7 The relative importance of the independent variables, 1,
2, 3, and 4 days before the target age in the construction of
boosted classification trees when using scaled fecundity (black
bars) and zero egg counts (grey bars). The classification tree
was trained with the Rauser et al. data. The relative importance
values sum to 100 and represent the percent of the bifurcations
using each variable
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do simple »* tests of dead error rates in each database
comparing the predictions based on scaled fecundity
records to zero egg count records. We used only the
dead error rates, since these are constructed from
independent female data, while the live error rates are
not. Only the Rauser et al. data show a significantly
different dead error rate. The scaled dead error rate
(21 %) in the Rauser et al. database was significantly
lower than the zero egg count rate (34 %, p < 107°).

Curtsinger (2015) has suggested that the days when
flies lay zero eggs are especially important for
identifying females that are characterized by low
levels of oviposition and reduced prospective survival.
Curtsinger uses the first zero-egg day as an indicator of
the start of a life phase he calls retired. Females not in
the retired stage are in the working stage. We have
shown that the proportion of females that have zero
egg days shows a pattern similar to average fecundity
(Fig. 4). That is, prior to death there is, on average,
about a two-week period during which the chance of a
female with a zero egg day increases. We suggest that
zero egg count days are simply a different scaling of
fecundity and that the patterns of zero egg days can be
explained by the death spiral.

We find the retired/working dichotomy less useful
than the death spiral. Firstly, the retired/worker
classification only works for females. But as we have
shown, males undergo a similar decline in reproduc-
tive function prior to death. The death spiral includes
multiple physiological traits, not simply reproductive
traits. As a classification scheme, the retired/worker
scheme is highly variable. In the Rauser et al. data,
20 % of females show no zero egg counts up to and
including the day before they die. Among females
showing a zero egg count day before death, the median
first zero egg count day occurs seven days before a
female’s death. Thus, for females with zero egg count
days, 50 % of them will have their first zero egg count
day half way into the death spiral. Lastly, for predicting
female death, zero counts work as well as scaled
fecundity in 3 out of 4 databases, but in the Rauser et al.
database scaled fecundity is significantly better than
zero egg counts. It should be noted that the testing set
of data used to predict the dead error rates in the Rauser
et al. database had only about 500 samples, which was
not substantially higher than the sample sizes used for
predicting dead error rates in the other databases.
Hence, the observed significance in the Rauser et al.
database cannot be due to simply a difference in power.
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Male virility

The slope of scaled male virility vs. weeks before
target age (Fig. 8) for alive males is small (—0.01) and
not significantly different from zero (95 % confidence
interval, (—0.067, 0.046)). On the other hand, the
males that were dead within a week of the target age
showed a positive slope (0.12) that was significantly
different from 0 (95 % confidence interval, (0.082,
0.16)). The pattern is very similar to that of fecundity,
as displayed in Fig. 2, suggesting that the death spiral
results in declining male virility as early as 2 weeks
before death.

Desiccation resistance and time-in-motion

The distribution of distance values in the two groups
(Fig. 9) shows that there is a higher frequency of small
distance values in the non-spiral group and more
frequent large distance values in the spiral group. The
result of these differences in the distribution is that the
two group means are significantly different
(» = 0.00069). The p value reported in Shahrestani
et al. (2012b) was for a two-tailed test, although in fact
the correct alternative hypothesis is that the average
distance in the spiral group is greater than the average
distance in the non-spiral groups, which was in fact
what was observed. Both mean time-in-motion and
desiccation resistance were reduced in the death spiral
group, indicating a decline in physiological function.
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Fig. 8 Scaled virility for males that dies within a week of the
target age (circles) and those that were alive for at least a week
after target age (triangles) for up to 3 weeks before the target
age. The bars are 95 % confidence intervals calculated from
1000 bootstrap samples
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Fig. 9 The distribution of Mahalanobis distance values based
on principal components of desiccation resistance and time-in-
motion measurements in females identified as either in the death
spiral or not in the death spiral based on their fecundity prior to
assays

While the distributions (Fig. 9) look similar, the tests
on the means used large samples to overcome the
inevitable misclassification problem with data of this
kind. Shahrestani et al. tested 3272 females for both
desiccation resistance and time-in-motion.

Discussion

General lessons for the construction
of demographic models

One natural consequence of the death spiral is that
population-level measurements of changes in pheno-
types with age must allow for possible effects
produced by the death spiral. In principle, a phenotype
could stay constant in an individual until they enter the
death spiral, at which point there would be a consistent
and severe decline. At the population level, it would
appear as if the average value of this phenotype
declines with age, since an increasing fraction of the
population would be expected to be in the death spiral
as a cohort of individuals get older. In the case of
fecundity and male virility, we know that such a
pattern of non-aging is not the case, because after
removing the individuals in the death spiral, we still
see an age dependent decline in these phenotypes
(Mueller et al. 2007; Shahrestani et al. 2012a).
However, other phenotypes would have to be individ-
ually tested for the impact of death spirals.
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To model the dynamics of age-specific change in a
phenotype like average fecundity, the number of
females in the death spiral and the number that are not
would need to be accounted for. Mueller et al. (2007)
demonstrated how the death spiral can be incorporated
into a model of age-specific fecundity. We should note
that the population heterogeneity generated by the
death spiral is fundamentally different from the
heterogeneity in age-specific mortality that has been
invoked as an explanation of mortality plateaus
(Vaupel et al. 1979; Mueller et al. 2011, Chap. 8).
There is no need to invoke heterogeneity in lifelong
robustness to generate death spiral phenomena.

Miiller et al. (2001) argue that lifespan is tied to the
rate at which fecundity declines and this rate is an
indicator of frailty. They reason that females showing
rapid fecundity declines early in life are frailer, and
thus can be expected to die at an early chronological
age. The death spiral, on the other hand, suggests the
death process affects many physiological traits. With
this interpretation, the rapid decline in female fecun-
dity early in life is a symptom of dying rather than a
cause of death. Traits affected by the death spiral may
be related to important fitness characters, like fecun-
dity and virility, or may be traits that are relatively
unconnected with fitness, like supine behavior or time-
in-motion. Further research is required to sort through
these alternative explanations of the death process.

A review of the literature suggests that many
previously documented biomarkers of aging or death
may in fact be part of the death spiral. We review some
of these next.

Wax and Goodrick (1978) have reported that old
mice within 1 week of death display more random
wheelrunning than old mice that are not within a week
of death. Recently, Belsky et al. (2015) suggested that
humans in midlife that are aging more rapidly also
show (i) less physically ability, (ii) cognitive decline
and brain aging, (iii) self-reported worse health, and
(iv) looked older. Zhang and Pincus (2016) report that
blood pressure and BMI are predictive of mortality in
mid-life, while blood glucose is predictive at later
ages.

Rera et al. (2012) recently reported that adult D.
melanogaster fed food laced with blue dye become
blue colored sometime shortly before death. Rera et al.
call these blue individuals “Smurfs.” The fly’s uptake
of dye is related to the loss of intestinal barrier
function. Smurfs also exhibit increased antimicrobial
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peptide expression, and impaired insulin/insulin-like
growth factor signaling. It seems likely that the Smurf
phenotype and its associated physiological syndromes
are also part of the death spiral, although additional
experiments would be needed to confirm this.

In longitudinal assays of individual D. melanoga-
ster using real-time video tracking of GFP fluores-
cence, hsp22 and hsp70 transgenic reporters began to
spike in expression ~5-10 h before death (Grover
et al. 2008, 2009). It has been suggested that hsp gene
expression levels could possibly be used to predict
remaining life span of individuals (Yang and Tower
2009).

The case of human disability

Chronic disability among the U.S. population has been
declining since 1982 (Cutler 2001; Manton and Gu
2001; Crimmins 2004; Manton et al. 2006). This
decline has occurred despite the fact that the elderly
have been increasing in numbers and living longer.
Numerous reasons have been proposed for this
decline, including improved human physiology from
better diets and better medical care (Fogel and Costa
1997; Schoeni et al. 2008). Manton et al. (2006)
estimate that these declines in disability rates saved
Medicare around $26 billion in 1999 alone. The
enormous costs of assisting the disabled make the
study of the process of disability an important practical
problem.

It has been suggested that, prior to becoming
disabled, individuals go through a series of steps called
the disablement process (Verbrugge and Jette 1994).
The disablement process suggests that some pathol-
ogy, like a disease or an injury, may lead to an
impairment that is a dysfunction of a specific body
system. Examples of such body systems include the
musculoskeletal and cardiovascular systems. These
impairments can lead to a specific limitation in activity
or movement, which becomes a disability when it
limits the individual’s ability to carry out activities of
daily life. This description of the disablement process
has found support in the bio-medical literature (Fauth
et al. 2008). The onset of disability may lead to a
downward spiral of new pathologies and ultimately to
death (Verbrugge and Jette 1994; Morley 2008). We
suggest that this process in humans is the analog of the
death spiral we have documented in fruit flies.
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Support for this last conjecture has been provided
by Christensen et al. (2008). They monitored the
physical and cognitive abilities of 2262 Danish
individuals, all born in 1905. Over the course of the
study, the individuals were between 92 and 100 years
of age. They found that the physical and cognitive
scores of a group of individuals that died within
2 years of the measurements were significantly lower
than the scores of similar aged individuals who did not
die.

At present we do not understand the environmental
and genetic factors that may affect the onset and
duration of the period of disability prior to death.
Research on this problem would be difficult, expen-
sive, and time consuming on human subjects. Appro-
priate animal model research would be a more
effective approach to resolving such questions. In
particular, lab cohorts that have been partitioned with
respect to the death spiral may provide useful infor-
mation with respect to the biochemical physiology
which underlies the transition to the death spiral.
Finally, it is not clear from the present analysis
whether entry into the death spiral is irreversible or
not. As this is ultimately a biotechnological question,
we are hopeful that further research will yield methods
of rescuing individual organisms from the death spiral.
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